PRINTED ELECTRONICS: A PATHWAY TO FUNCTIONALLY-RICH

SYSTEMS

Vivek Subramanian EECS Department University of California, Berkeley

Why print? • Low cost?

Courtesy: G. Cho, Sunchon National University

Added functionality

- Integration spatially specific deposition
- Customizability digital printing
- Lightweight / robust / flexible

Towards a viable printing technique...

Understanding Gravure Printing

Characteristics of Gravure Printing

Nanoparticles as printable precursors

 Nanoparticles generally show a reduction in melting point relative to bulk counterparts

$$T_{melt}(R) = T_m^{bulk} (1 - \sigma / R)$$

 Additionally, nanoparticles may be stabilized in solution by encapsulating them in organic ligands, which may be removed after printing by subsequent annealing

• Achieved thin film conductivity as high as 70% of bulk @ <150°C!

Huang et al, J. Electrochem. Soc, 150, 2003

Passive Components

 We have made numerous passive components for use in tagging applications.

Close-up of inductor on plastic (Q > 30 have been demonstrated)

Close-up of capacitor, showing 2 layers of gold separated by 100nm of polyimide.

Printed Transistors

Device Characteristics

	μ_{sat}	lmax/Imin (sat)	μ _{lin}	Vt(V)	Swing (V/dec)
Average	0.58	2.77E+03	0.28	1.83	4.83
STD	0.14	4.46E+03	0.05	0.68	0.59
Number of devices:					19

We are able to realize circuits running @ >1Mhz entirely using printing on flex

Novel devices Exploiting the advantages of printed materials

1E-4 1E-5 1E-6 1E-7 1E-8 ||°| [A] 1E-9 R, = 42.7 kΩ 1E-10 V_{pp}= 1.0 V 1E-11 V_{DD}= 0.5 V 1E-12 V__= 0.1 V 1E-13 0 5 10 15 20 25 V₆₅ [V]

Printed healthcare analytics

- Thin film components needed in biological chips can be very efficiently printed
- Additive Processing- saves cost and time in fabrication
- Integration of diverse biological functionality and materials on the same substrate

A) Printed Heaters b) Printed RTDs ELECTROPHORESIS: Printed Valves

DETECTION: OTFT Sensors

Printed Heaters for PCR

Printed Temperature Detectors

1-RTD Structure

2-RTDs structure

Printed Valves for Control

Integrated PCR Chamber

Top: Glass 1 layer with etched out channels, PCR reactor, and heater on top

Bottom: Glass 2 layer with RTD on top

PCR Demonstration

30-

-100

Temperature (°C)

Printed Power Sources

 We've made printed batteries with energy density better than thin film Li.

The coming convergence

- Novel Materials
- New Manufacturing Paradigms
- Obiquitous systems integrating
 - Batteries
 - Computation / Communication
 - Sensing
 - Interaction